Q. Let $[ t ]$ denote the greatest integer $\leq t$ and $\{ t \}$ denote the fractional part of $t$. Then integral value of $\alpha$ for which the left hand limit of the function $f(x)=[1+x]+\frac{\alpha^{2[x]+\{x \mid}+[x]-1}{2\lfloor x]+\{x\}}$ at $x=0$ is equal to $\alpha-\frac{4}{3}$ is___
Solution: