Q. Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $( p * \sim q ) \Rightarrow ( p \square q )$ is a tautology. Then :
Solution:
$p$
$q$
$\sim q$
$p \wedge \sim q$
$p \vee q$
$( p \wedge \sim q ) \rightarrow( p \vee q )$
T
T
F
F
T
T
T
F
T
T
T
T
F
T
F
F
T
T
F
F
T
F
F
T
$p$ | $q$ | $\sim q$ | $p \wedge \sim q$ | $p \vee q$ | $( p \wedge \sim q ) \rightarrow( p \vee q )$ |
---|---|---|---|---|---|
T | T | F | F | T | T |
T | F | T | T | T | T |
F | T | F | F | T | T |
F | F | T | F | F | T |