Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let sn = cos ((nπ/10)), n=1,2,3, ldots Then the value of (s1s2 ldots s10/s1+s2+ ldots+s10) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $s_n = \cos \left(\frac{n\pi}{10}\right), n=1,2,3,\ldots$ Then the value of $\frac{s_{1}s_{2}\ldots s_{10}}{s_{1}+s_{2}+\ldots+s_{10}}$ is equal to
KEAM
KEAM 2014
Trigonometric Functions
A
$\frac{1}{\sqrt{2}}$
B
$\frac{\sqrt{3}}{2}$
C
$2\sqrt{2}$
D
0
E
$\frac{1}{2}$
Solution:
Given, $s_{n}=\cos \left(\frac{n \pi}{10}\right)$
Now, $S_{1} \,S_{2}\, S_{3} \ldots S_{10}$
$=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{2 \pi}{10}\right) \ldots \cos \left(\frac{5 \pi}{10}\right) \ldots \cos \left(\frac{10 \pi}{10}\right)$
$=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{\pi}{5}\right) \ldots \cos \left(\frac{\pi}{2}\right) \ldots \cos (\pi)$
$=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{\pi}{5}\right) \ldots 0 \ldots \cos \pi=0$
$\therefore \frac{S_{1}\, S_{2}\, S_{3} \ldots S_{10}}{S_{1}+s_{2}+\ldots+s_{10}}=0$