Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
Let σ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region EI, EI I and EI I I are:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_I, E_{I I}$ and $E_{I I I}$ are:
JEE Main
JEE Main 2023
Electric Charges and Fields
A
$\vec{E}_I=0, \vec{E}_{I I}=\frac{\sigma}{\epsilon_0} \hat{n}, E_{I I I}=0$
9%
B
$\vec{E}_I=\frac{2 \sigma}{\epsilon_0} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{2 \sigma}{\epsilon_0} \hat{n}$
12%
C
$\vec{E}_I=-\frac{\sigma}{\epsilon_0} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{\sigma}{\epsilon_0} \hat{n}$
41%
D
$\vec{E}_I=\frac{\sigma}{2 \epsilon_0} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\frac{\sigma}{2 \epsilon_0} \hat{n}$
38%
Solution:
Assuming RHS to be $\hat{n}$
$ \vec{E}_{ I }=\frac{\sigma}{2 \epsilon_0}(-\hat{n})+\frac{\sigma}{2 \epsilon_0}(-\hat{n})=-\frac{\sigma}{\epsilon_0} \hat{n} $
$ \vec{E}_{I I}=0 $
$ \vec{E}_{I I I}=\frac{\sigma}{2 \epsilon_0}(\hat{n})+\frac{\sigma}{2 \epsilon_0}(\hat{n})=\frac{\sigma}{\epsilon_0}(\hat{n})$