Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $S=\left\{z \in C : z^2+\bar{z}=0\right\}$. Then $\displaystyle\sum_{z=S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to _______

JEE MainJEE Main 2022Complex Numbers and Quadratic Equations

Solution:

$S=\left\{z \in C: z^2+\bar{z}=0\right\}$ Let $z = x + iy$ $ z ^2= x ^2- y ^2+2 ixy$ $ \bar{z}=x-i y$ $z^2+\bar{z}=x^2-y^2+x+i(2 x y-y)=0$ $ \Rightarrow x^2+x-y^2=0 \& 2 x y-y=0 $ $y=0 \text { or } x=\frac{1}{2}$ If $y =0 ; x =0,-1$ If $x=\frac{1}{2} ; y=\frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2}$ $\displaystyle\sum_{z \in S}\left(\operatorname{Re}(z)+\operatorname{Im}(z)=\left(0-1+\frac{1}{2}+\frac{1}{2}\right)+0+0+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)$