Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let
$S =\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\} . $ Then
$ n ( S )+\displaystyle\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$
is equal to:

JEE MainJEE Main 2022Sets

Solution:

$ 8^{2 \sin ^2 \theta}+8^{2-2 \sin ^2 \theta}=16 $
$ y +\frac{64}{ y }=16$
$ \Rightarrow y =8$
$ \Rightarrow \sin ^2 \theta=1 / 2$
$ n ( S )+\displaystyle\sum_{\theta \in S } \frac{1}{\cos (\pi / 4+2 \theta) \sin (\pi / 4+2 \theta)}$
$ =4+(-2) \times 4=-4$