Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn denote the sum of first n terms of an A.P. and S2n = 3Sn. If S3n =k Sn, then the value of k is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $S_{n}$ denote the sum of first $n$ terms of an $A.P$. and $S_{2n} = 3S_{n}$. If $S_{3n} =k S_{n}$, then the value of $k$ is equal to
KEAM
KEAM 2011
Sequences and Series
A
$4$
B
$5$
C
$6$
D
$7$
E
$8$
Solution:
Given, $S_{2 n}=3 S_{n}$
$\frac{2 n}{2}[2 a+(2 n-1) d]=3 \cdot \frac{n}{2}[2 a+(n-1) d]$
Where, $a$ and $d$ are first term and common difference of an AP respectively.
$\Rightarrow \, 4 a+2(2 n-1) d=6 a+3(n-1) d $
$ \Rightarrow \, 2 a+(3 n-3-4 n+2) d=0 $
$ \Rightarrow \, 2 a+(-n-1) d=0 $
$ \Rightarrow \, 2 a+(n+1)(-d)=0 $
$ \Rightarrow \, 2 a=(n+1) d \,\,\,\,\,\,\dots(i)$
Now, $ \frac{S_{3 n}}{S_{n}}=\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]} $
$=\frac{3[(n+1) d+(3 n-1) d]}{[(n+1) d+(n \quad 1) d]}$ [From Eq. (i)]
$=\frac{3[(n+1+3 n-1) d]}{(n+1+n-1) d}=\frac{3(4 n d)}{(2 n d)}=6 $
$\Rightarrow \, S_{3 n}=6 S_{n}$
On compare with, $S_{3 n}=k S_{n}$
$\Rightarrow \, k=6$