Q.
Let $S_n + 1 + q + q^2 + ....... + q^n $ and $T_{n} = 1+ \left(\frac{q+1}{2}\right) + \left(\frac{q+1}{2}\right)^{2} +..... +\left(\frac{q+1}{2}\right)^{n} $ where q is a real number and $q \neq 1$.
If ${^{101}C_1} + {^{101}C_2} .S_1 + ...... + {^{101}C_{101}}.S_{100} = \alpha T_{100}$,
then $\alpha$ is equal to :-
Solution: