Q. Let $S_k = 3^k ·{}^{ 100}C_0 ·{}^{ 100}C_k - 3^{k - 1}· {}^{100}C_1 · {}^{99}C_{k - 1}+ 3^{k - 2} ·{}^{100}C_2 · {}^{98}C_{k - 2} ...... + (- 1)^{k} · {}^{100}C_k · {}^{100 - k}C_0 ,$ then value of $\displaystyle\sum_{ r =0}^{100} S _{ r } S _{100- r }$ is equal to
Binomial Theorem
Solution: