Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S be the sum, P be the product and R be the sum of reciprocals of n terms in a G.P. . Then,
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $S$ be the sum, $P$ be the product and $R$ be the sum of reciprocals of $n$ terms in a G.P. . Then,
Sequences and Series
A
$S^2 R^n=P^n$
B
$R^2 P^n=S^n$
C
$R^2 S^n=P^n$
D
$P^2 R^n=S^n$
Solution:
Let the $n$ terms of G.P. is $a, a r, a r^2, a r^3 \ldots, a r^{n-1}$.
Given, $S=$ Sum of $n$ terms
$=a+a r+a r^2+a r^3+\ldots+a r^{n-1}$
$=\frac{a\left(r^n-1\right)}{r-1}......$(i)
$R=$ Sum of the reciprocals of $n$ terms
$=\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^2}+\ldots+\frac{1}{a r^{n-1}} $
$ =\frac{\frac{1}{a}\left[1-\left(\frac{1}{r}\right)^n\right]}{1-\frac{1}{r}}=\frac{1}{a}\left[\frac{1}{1}-\frac{1}{r^n}\right] \times \frac{1}{\frac{r-1}{r}}$
$ =\frac{1}{a}\left[\frac{r^n-1}{r^n}\right] \times \frac{r}{r-1}$
$\Rightarrow R=\frac{\left(r^n-1\right) r}{a r^n(r-1)} ....$(ii)
and $P=$ Product of $n$ terms
$=a \times a r \times a r^2 \times a r^3 \times \ldots \times a r^{n-1}$
$= a^{1+1+1+\ldots \text { upto } n \text { terms }} r^{1+2+3+\ldots+(n-1) \text { terms }} $
$= a^n r \frac{n(n-1)}{2} $
$ {\left[\because \Sigma n=\frac{n(n+1)}{2}\right] }$
$\Rightarrow P^2=a^{2 n} r^{n(n-1)}.....$(iii)
Now, consider $P^2 R^n=a^{2 n} r^{n(n-1)}\left[\frac{r\left(r^n-1\right)}{a r^n(r-1)}\right]^n$
[using Eqs. (ii) and (iii)]
$=a^{2 n} r^{n(n-1)} \frac{r^n\left(r^n-1\right)^n}{a^n\left(r^n\right)^n(r-1)^n}$
$ =\frac{a^n r^{n^2}\left(r^n-1\right)^n}{r^{n^2}(r-1)^n} $
$ =\frac{a^n\left(r^n-1\right)^n}{(r-1)^n} $
$ =\left[\frac{a\left(r^n-1\right)}{r-1}\right]^n=S^n$ [using Eq. (i)]