Given, $a R b \Leftrightarrow|a-b| \leq 1$
For Reflexive
$a R a=|a-a|=0 \leq 1$
So, it is reflexive.
For Symmetric
$a R b \Leftrightarrow |a-b| \leq 1$
$\Rightarrow |b-a| \leq 1$
i.e., $a R b \Rightarrow bRa$
So, it is symmetric.
For Transitive
Take $a=1,\, b=2$ and $c=3$
Now, $|a-b|=|1-2|=1$
and $|b-c|=|2-3|=1$
But $|a-c|=|1-3|=2>1$, which is not true.
i.e., $a R b,\,\, b R c \neq a R C$
So, it is not transitive.