Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S be the set of all complex numbers z satisfying |z2+z+1|=1. Then which of the following statements is/are TRUE?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $S$ be the set of all complex numbers $z$ satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
JEE Advanced
JEE Advanced 2020
A
$\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$
33%
B
$|z| \leq 2$ for all $z \in S$
33%
C
$\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
167%
D
The set $S$ has exactly four elements
0%
Solution:
$\left|z^{2}+z+1\right|=1$
$\Rightarrow \left|\left(z+\frac{1}{2}\right)^{2}+\frac{3}{4}\right|=1$
$\Rightarrow \left(z+\frac{1}{2}\right)^{2}\left|-\frac{3}{4} \leq 1 \leq\right| z+\left.\frac{1}{2}\right|^{2}+\frac{3}{4}$
$\Rightarrow \frac{1}{4} \leq\left|z+\frac{1}{2}\right|^{2} \leq \frac{7}{4}$
$\Rightarrow \frac{1}{2} \leq\left|z+\frac{1}{2}\right| \leq \frac{\sqrt{7}}{2}$
option (c) is correct
$\because\left|z+\frac{1}{2}\right| \leq \frac{\sqrt{7}}{2}$
$\Rightarrow |z|-\frac{1}{2} \leq \frac{\sqrt{7}}{2}$
$ \Rightarrow |z| \leq \frac{\sqrt{7}+1}{2}$
$\Rightarrow |z| \leq 2$ option (B) is correct
Clearly $z=0,-1, i,-i,-1 \pm i$ a
re satisfying the given equation.
So we have more than $4$ solutions