Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $S$ be the set of all $2 \times 2$ symmetric matrices whose entries are either zero or one. A matrix $X$ is chosen from $S$. The probability that the determinant of $X$ is not zero is

KEAMKEAM 2017Probability - Part 2

Solution:

$S=\{2 \times 2$ symmetric matrices whose entries are either zero or one $\}$
$\left\{\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\begin{bmatrix}1&0\\ 0&0\end{bmatrix}\begin{bmatrix}0&0\\ 0&1\end{bmatrix}\begin{bmatrix}0&0\\ 0&0\end{bmatrix}\begin{bmatrix}0&1\\ 1&0\end{bmatrix}\begin{bmatrix}0&1\\ 1&1\end{bmatrix}\begin{bmatrix}1&1\\ 1&0\end{bmatrix}\begin{bmatrix}1&1\\ 1&1\end{bmatrix}\right\}$
$\therefore n(s)=8$
Let $x=\{$ matrix whose determinant is non-zero $\}$
$\left\{\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\begin{bmatrix}0&1\\ 1&0\end{bmatrix}\begin{bmatrix}0&1\\ 1&1\end{bmatrix}\begin{bmatrix}1&1\\ 1&0\end{bmatrix}\right\}$
$\therefore n(x)=4$
$\therefore P(x)=\frac{n(X)}{n(S)}$
$=\frac{4}{8}=\frac{1}{2}$