Q. Let $S =30 \cdot{ }^{15} C _0+27 \cdot{ }^{15} C _1+24 \cdot{ }^{15} C _2+\ldots \ldots . .12 \cdot{ }^{15} C _{14}-15 \cdot{ }^{15} C _{15}$ has the value $\alpha \cdot 2^\beta$, where $\alpha, \beta \in N$ then the least value of $|\alpha-\beta|$ is equal to
Binomial Theorem
Solution: