Q.
Let $S=\{1,2,3,4,5,6,7,8,9,10\}$. Define
$f: S \rightarrow S$ as $f(n)=\left\{\begin{array}{cl}2 n, & \text { if } n=1,2,3,4,5 \\ 2 n-11 & \text { if } n=6,7,8,9,10\end{array}\right.$
Let $g : S \rightarrow S$ be a function such that $f o g(n)=\begin{cases}n+1 & \text {, if } n \text { is odd } \\ n-1 & \text {, if } n \text { is even }\end{cases}$, then $g (10)(( g (1)+ g (2)+ g (3)+ g (4)+ g (5))$ is equal to:
Solution: