Q. Let $S =(0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\}$. Let $y =$ $y(x), x \in S$, be the solution curve of the differential equation $\frac{d y}{d x}=\frac{1}{1+\sin 2 x}, y\left(\frac{\pi}{4}\right)=\frac{1}{2}$. if the sum of abscissas of all the points of intersection of the curve $y = y ( x )$ with the curve $y =\sqrt{2} \sin x$ is $\frac{ k \pi}{12}$, then $k$ is equal to________.
Solution: