Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let roots of equation : $ax ^2+ bx + c =0$ are $(\alpha-\beta)$ and $(\gamma-\delta)$ and roots of equation $Ax ^2+ Bx + C =0$ are $(\alpha+\delta)$ and $(\beta+\gamma)$ then $\left|\frac{ a }{ A }\right|$ equals
[Note: $D _1, D _2$ represent discriminants of $ax ^2+ bx + c =0$ and $Ax ^2+ Bx + C =0$ respectively.

Complex Numbers and Quadratic Equations

Solution:

Difference of roots is same
$\Rightarrow S _1^2-4 P _1= S _2^2-4 P _2 $
$\Rightarrow \frac{ b ^2}{ a ^2}-\frac{4 c }{ a }=\frac{ B ^2}{ A ^2}-\frac{4 C }{ A } $
$\Rightarrow \left(\frac{ a }{ A }\right)^2=\frac{ b ^2-4 ac }{ B ^2-4 AC }=\frac{ D _1}{ D _2}$