Q.
Let $R$ denote the set of all real numbers and $R^{+}$ denote the set of all positive real numbers. For the subsets $A$ and $B$ of $R$ define $f: A \rightarrow B$ by $f(x)=x^{2}$ for $x \in A$. Observe the two lists given below
Column I
Column II
A.
$f$ is one-one and onto, if
1.
$A=R^{+}, B=R$
B.
$f$ is one-one but not onto, if
2.
$A=B=R$
C.
$f$ is onto but not one-one, if
3.
$A=R, B=R^{+}$
D.
$f$ is neither one-one nor onto, if
4.
$A=B=R^{+}$
Column I | Column II | ||
---|---|---|---|
A. | $f$ is one-one and onto, if | 1. | $A=R^{+}, B=R$ |
B. | $f$ is one-one but not onto, if | 2. | $A=B=R$ |
C. | $f$ is onto but not one-one, if | 3. | $A=R, B=R^{+}$ |
D. | $f$ is neither one-one nor onto, if | 4. | $A=B=R^{+}$ |
EAMCETEAMCET 2010
Solution: