Q. Let $r$ be the positive real zero of $P(x)=9 x^5+7 x^2-9$. If the sum $S=r^4+2 r^9+3 r^{14}+4 r^{19}+$..... $\infty$ can be expressed as the rational number $\left(\frac{ a }{ b }\right)$ in the lowest term, then find the sum of digits in $( a + b )$.
Sequences and Series
Solution: