Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $P(x)=x^6+a x^5+b x^4+c x^3+d x^2+e x+f$ be a polynomial such that $P(1)=1 ; P(2)=2$; $P(3)=3 ; P(4)=4 ; P(5)=5$ and $P(6)=6$. If $P(7)=k$, then find the value of $\left[\frac{k}{73}\right]$, where $[$.$] denotes$ the greatest integer function.

Complex Numbers and Quadratic Equations

Solution:

$P(x)=(x-1)(x-2)(x-3) \times(x-4)(x-5)(x-6)+x$
$P (7)=727= k ; $
$\left[\frac{727}{73}\right]$