Q. Let $P(x)=x^6+a x^5+b x^4+c x^3+d x^2+e x+f$ be a polynomial such that $P(1)=1 ; P(2)=2$; $P(3)=3 ; P(4)=4 ; P(5)=5$ and $P(6)=6$. If $P(7)=k$, then find the value of $\left[\frac{k}{73}\right]$, where $[$.$] denotes$ the greatest integer function.
Complex Numbers and Quadratic Equations
Solution: