Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets, then

Sets

Solution:

Solution: $\sin \theta-\cos \theta=\sqrt{2} \cos \theta$
$\Leftrightarrow \sin \theta=(\sqrt{2}+1) \cos \theta $
$\Leftrightarrow \cos \theta=(\sqrt{2}-1) \sin \theta$
$\Leftrightarrow \sin \theta+\cos \theta=\sqrt{2} \sin \theta $
$\Rightarrow P=Q .$