Q. Let $P Q$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$ . Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{ e ^{2}}$ is equal to :
Solution: