Q.
Let $P_{n}$ be a square matrix of order $3$ such that $P_{n}=\left[a_{i j}\right]$ , where $a_{i j}=\frac{3 i + j}{4^{2 n}}$ for $1\leq i\leq 3,1\leq j\leq 3.$ Then the value of $\underset{n \rightarrow \in fty}{l i m}T_{r}\left(4 P_{1} + 4^{2} P_{2} . . . . . 4^{n} P_{n}\right)$ is
(where $T_{r}\left(A\right)$ denotes trace of matrix $A$ i.e sum of principal diagonal elements of $A$ )
NTA AbhyasNTA Abhyas 2020Matrices
Solution: