Q.
Let $p \lambda^4+q \lambda^3+r \lambda^2+s \lambda+t$
$=\begin{vmatrix}\lambda^2+3 \lambda & \lambda-1 & \lambda-3 \\
\lambda-1 & -2 \lambda & \lambda-4 \\
\lambda-3 & \lambda+4 & 3 \lambda
\end{vmatrix}$
where $p, q, r, s$ and $t$ are constants. Then value of $t$ is
Determinants
Solution: