Thank you for reporting, we will resolve it shortly
Q.
Let $P$ be any point on ellipse $3 x^2+4 y^2=12$ and $S, S$ are its foci then the locus of the centroid of triangle PSS' is a conic $C$ whose
Conic Sections
Solution:
$\frac{x^2}{4}+\frac{y^2}{3}=1 ; e^2=1-\frac{3}{4}=\frac{1}{4} \Rightarrow e =\frac{1}{2}$
$\therefore 3 h =2 \cos \theta \Rightarrow \cos \theta=\frac{3 h }{2}$
and $3 k =\sqrt{3} \sin \theta \Rightarrow \sin \theta=\sqrt{3} k$
Now, on squaring and adding, we get
$1=\frac{9 x^2}{4}+3 y^2 \text { or } \frac{x^2}{\frac{4}{9}}+\frac{y^2}{\frac{1}{3}}=1$
Now verify alternatives.