Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P be a variable point on the parabola y=4 x2+1. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y=x is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $P$ be a variable point on the parabola $y=4 x^{2}+1$. Then, the locus of the mid-point of the point $P$ and the foot of the perpendicular drawn from the point $P$ to the line $y=x$ is :
JEE Main
JEE Main 2021
Conic Sections
A
$(3 x-y)^{2}+(x-3 y)+2=0$
B
$2(3 x-y)^{2}+(x-3 y)+2=0$
C
$(3 x-y)^{2}+2(x-3 y)+2=0$
D
$2(x-3 y)^{2}+(3 x-y)+2=0$
Solution:
$\frac{K-C}{h-C}=-1$
$C=\frac{h+K}{2}$
$R=\left(\frac{x+C}{2}, \frac{y+C}{2}\right)$
$R=\left(\frac{x}{2}+\frac{h}{4}+\frac{K}{4}, \frac{y}{2}+\frac{h}{4}+\frac{k}{4}\right)$
$h=\frac{x}{2}+\frac{h}{4}+\frac{K}{4}$
$K=\frac{y}{2}+\frac{h}{4}+\frac{K}{4}$
$\Rightarrow x=\frac{3 h}{2}-\frac{K}{2}, y=\frac{3 K}{2}-\frac{h}{2}$
$Y=4 x^{2}+1$
$\left(\frac{3 k-h}{2}\right)=4\left(\frac{3 h-k}{2}\right)^{2}+1$