Q. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$, where $\theta+\phi=\frac{\pi}{2}$, be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If $(h, k)$ is the point of the intersection of the normals at $P$ and $Q$, then $k$ is equal to
IIT JEEIIT JEE 1999Conic Sections
Solution: