Q. Let $P\left(a_1, b_1\right)$ and $Q\left(a_2, b_2\right)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let $O$ be the origin and $OC$ be perpendicular to both $CP$ and $CQ$. If the area of the triangle $OCP$ is $\frac{\sqrt{35}}{2}$, then $a_1^2+a_2^2+b_1^2+b_2^2$ is equal to ______
Solution: