Q.
Let
$P=\begin{bmatrix}-30 & 20 & 56 \\90 & 140 & 112 \\120 & 60 & 14\end{bmatrix}$
and
$A=\begin{bmatrix}2 & 7 & \omega^{2} \\ -1 & -\omega & 1 \\ 0 & -\omega & -\omega+1\end{bmatrix}$
where $\omega=\frac{-1+ i \sqrt{3}}{2}$, and $I _{3}$ be the identity matrix of order $3 .$ If the determinant of the matrix $\left( P ^{-1} AP - I _{3}\right)^{2}$ is $\alpha \omega^{2}$, then the value of $\alpha$ is equal to ______.
Solution: