Q. Let $\left( p +\frac{1}{ p }\right)\left( q +\frac{1}{ q }\right)\left( r +\frac{1}{ r }\right)< 0$ where $p , q , r \in R -\{0\}$ and $\alpha=\frac{| p |}{ p }+\frac{| q |}{ q }+\frac{| r |}{ r }$. If the equation $x^2+(m-2) x-n=0$ is satisfied by distinct values of ' $\alpha$ ' then find the value of $(m+n)$.
Complex Numbers and Quadratic Equations
Solution: