Q.
Let $\omega$ be the complex number representing the point $M \left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$ and $a , b , c , \alpha, \beta, \gamma$ be non-zero complex numbers such that
$a+b+c=\alpha $
$a+b \omega+c \omega^2=\beta$
$a+b \omega^2+c \omega=\gamma$
Number of distinct complex numbers $z$ satisfying the equation
$
(z+1)\begin{vmatrix}
z+\omega^2 & 1 \\
1 & z+\omega
\end{vmatrix}+\omega\begin{vmatrix}
1 & \omega \\
z+\omega & \omega^2
\end{vmatrix}+\omega^2\begin{vmatrix}
\omega & z+\omega^2 \\
\omega^2 & 1
\end{vmatrix}=0$
is equal to
Complex Numbers and Quadratic Equations
Solution: