Q. Let $\omega$ be the complex number $\cos \frac{2 \pi}{3}$ $+i \sin \frac{2 \pi}{3}$. Then the number of distinct complex number $z$ satisfying $\begin{vmatrix}z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega\end{vmatrix}=0$ is
Determinants
Solution: