Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let OABC be a regular tetrahedron with side length unity, then its volume (in cubic units) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $OABC$ be a regular tetrahedron with side length unity, then its volume (in cubic units) is
NTA Abhyas
NTA Abhyas 2020
Vector Algebra
A
$3\sqrt{2}$
B
$6\sqrt{2}$
C
$\frac{1}{3 \sqrt{2}}$
D
$\frac{1}{6 \sqrt{2}}$
Solution:
Let the position vector of $O, A, B, C$ are $\overrightarrow{0}, \vec{a}, \vec{b}, \vec{c}$ respectively $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$
$|\overrightarrow{O A}|=|\overrightarrow{O B}|=|\overrightarrow{O C}|=1$ [Given
Volume $=\frac{1}{6}\left[\begin{array}{lll}\overrightarrow{O A} & \overrightarrow{O B} & \overrightarrow{O C}\end{array}\right]=\frac{1}{6}\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \ldots \ldots$ (i)
$\therefore \left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=\left|\begin{array}{cccc}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$
$\Rightarrow \left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=\left|\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right|$
$\Rightarrow \left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=1\left(\frac{3}{4}\right)-\frac{1}{2}\left(\frac{1}{4}\right)+\frac{1}{2}\left(-\frac{1}{4}\right)=\frac{1}{2}$
$\Rightarrow \left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\frac{1}{\sqrt{2}}$
From (i),
Volume of the tetrahedron $=\frac{1}{6 \sqrt{2}}$ cubic units