Q.
Let $O$ be the origin, $OP$ and $OQ$ be two perpendicular chords of equal length of the circle $x^{2}+y^{2}-4 x+8 y=0$. Let $m_{1}$ and $m_{2}$ be the slopes of chords $OP$ and $OQ$.
Evaluate $\left|\frac{m_{1}}{m_{2}}\right|$, where $m_{1}>m_{2}$.
Conic Sections
Solution: