Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $N$ be the sum of the numbers appeared when two fair dice are rolled and let the probability that $N-2, \sqrt{3 N}, N+2$ are in geometric progression be $\frac{k}{48}$, Then the value of $k$ is

JEE MainJEE Main 2023Probability

Solution:

$n(s)=36$
Given : $N -2, \sqrt{3 N }, N +2$ are in G.P.
$ 3 N =( N -2)( N +2)$
$ 3 N = N ^2-4 $
$ \Rightarrow N ^2-3 N -4=0$
$ ( N -4)( N +1)=0 \Rightarrow N =4 \text { or } N =-1 \text { rejected }$
$( Sum =4) \equiv\{(1,3),(3,1),(2,2)\} $
$ n ( A )=3$
$ P ( A )=\frac{3}{36}=\frac{1}{12}=\frac{4}{48} \Rightarrow k =4$