Q.
Let $|M|$ denote the determinant of a square matrix $M$. Let $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ be the function defined by
$g (\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1}$
where
$f(\theta)=\frac{1}{2}\begin{vmatrix}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{vmatrix}+\begin{vmatrix}\sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{ e }\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{ e }\left(\frac{\pi}{4}\right) & \tan \pi\end{vmatrix}$
Let $p (x)$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $g (\theta)$, and $p (2)=2-\sqrt{2}$. Then, which of the following is/are TRUE?
JEE AdvancedJEE Advanced 2022
Solution: