Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $M$ be a $3 \times 3$ matrix satisfying $ M\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}=\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} M\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}=\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \text { and } M\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 12 \end{bmatrix}$
then sum of the diagonal entries of $M$ is

Matrices

Solution:

$M\begin{bmatrix}1\\ 0\\ 0\end{bmatrix}=M\left(\begin{bmatrix}1\\ -1\\ 0\end{bmatrix}+\begin{bmatrix}0\\ 1\\ 0\end{bmatrix}\right)$
$M=\begin{bmatrix}-1\\ 2\\ 3\end{bmatrix}+\begin{bmatrix}1\\ 1\\ -1\end{bmatrix}=\begin{bmatrix}0\\ 3\\ 2\end{bmatrix}$
and $M\begin{bmatrix}0\\ 0\\ 1\end{bmatrix}=M\left(\begin{bmatrix}1\\ 1\\ 1\end{bmatrix}-\begin{bmatrix}1\\ 0\\ 0\end{bmatrix}-\begin{bmatrix}0\\ 1\\ 0\end{bmatrix}\right)$
$=\begin{bmatrix}0\\ 0\\ 12\end{bmatrix}-\begin{bmatrix}0\\ 3\\ 2\end{bmatrix}-\begin{bmatrix}-1\\ 2\\ 3\end{bmatrix}=\begin{bmatrix}1\\ -5\\ 7\end{bmatrix}$
$M\begin{bmatrix}1\\ 0\\ 0\end{bmatrix}=\begin{bmatrix}0\\ 3\\ 0\end{bmatrix}\Rightarrow m_{11}=0$
Similarly, $M\begin{bmatrix}0\\ 1\\ 0\end{bmatrix}=\begin{bmatrix}-1\\ 2\\ 3\end{bmatrix}\Rightarrow m_{22}=2$
and $m_{33}=7$