Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $M$ be a $3 \times 3$ invertible matrix with real entries and let $I$ denote the $3 \times 3$ identity matrix. If $M^{-1}=\text{adj}(\text{adj} M)$, then which of the following statements is/are ALWAYS TRUE?

JEE AdvancedJEE Advanced 2020

Solution:

$\because M^{-1}=\text{adj}(\text{adj} M)$
$\Rightarrow M^{-1}=|M| M \ldots(1)$
$\Rightarrow |M-1|=\left|M^{3}\right||M|$
$\Rightarrow |M|^{5}=1 \Rightarrow |M|=1$
Substituting $|M|=1$ in $(1)$ we get
$M=M^{-1} \Rightarrow M^{2}=1$
also adjM $=|M| \cdot M^{-1}=M$
Hence $(\text{adj} M)^{2}=M^{2}=I$