Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $M$ and $N$ be two $3 \times 3$ matrices such that $MN = NM$. Further, if $M \neq N ^{2}$ and $M ^{2}= N ^{4}$, then

JEE AdvancedJEE Advanced 2014Matrices

Solution:

$M^{2}=N^{4} $
$\Rightarrow M^{2}-N^{4}=O $
$\Rightarrow \left(M-N^{2}\right)\left(M+N^{2}\right)=O$
As M, N commute.
Also, $M \neq N^{2}, \text{Det}\left(\left(M-N^{2}\right)\left(M+N^{2}\right)\right)=0$
As $M - N ^{2}$ is not null
$\Rightarrow \text{Det}\left( M + N ^{2}\right)=0$
Also Det $\left(M^{2}+M N^{2}\right)=($ Det $M)\left(\right.$ Det $\left.\left(M+N^{2}\right)\right)=0$
$\Rightarrow $ There exist non-null $U$ such that $\left( M ^{2}+ MN ^{2}\right) U = O$