Given, ln $=\frac{2^{n}+(-2)^{n}}{2^{n}}=1+\frac{(-2)^{n}}{2^{n}}\,\...(i)$
And $ L_{n}=\frac{2^{n}+(-2)^{2 n}}{3^{n}}\,...(ii)$
Now, from Eq. (i), we get
$\displaystyle\lim _{n \rightarrow \infty}$ ln $=\begin{cases}0, & \text { when } n \text { is odd } \\ 2, & \text { when } n \text { is even }\end{cases}$
$\therefore \, \displaystyle\lim _{n \rightarrow \infty}$ does not exist
and $\displaystyle\lim _{n \rightarrow \infty} L_{n}=0$
$\therefore \, \displaystyle\lim _{x \rightarrow \infty} L_{n}$ exist.