Q.
Let $L _1: \frac{ x -1}{1}=\frac{ y -1}{2}=\frac{ z -1}{ k }$ and $L _2: \frac{ x -3}{1}=\frac{ y -2}{-1}=\frac{ z -3}{-1}$ be two intersecting lines and $L _3$ be a straight line which is perpendicular to $L _1$ and $L _2$ and passing through their point of intersection. If length of perpendicular from $(3,1,2)$ to the line $L _3$ is $\lambda$ then $[\lambda]$ equals
[Note: [y] denotes the greatest integer function less than or equal to $y$.]
Vector Algebra
Solution: