Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $k$ be a real number such that $k \neq 0$. If $\alpha$ and $\beta$ are non zero complex numbers satisfying $\alpha+\beta=-2 k$ and $\alpha^2+\beta^2=4 k^2-2 k$, then a quadratic equation having $\frac{\alpha+\beta}{\alpha}$ and $\frac{\alpha+\beta}{\beta}$ as its roots is equal to

Complex Numbers and Quadratic Equations

Solution:

We have $\alpha+\beta=-2 k$
Also, $ \alpha^2+\beta^2=4 k ^2-2 k \Rightarrow(\alpha+\beta)^2-2 \alpha \beta=4 k ^2-2 k \Rightarrow \alpha \beta= k$
$\therefore $ Sum of roots $=\frac{\alpha+\beta}{\alpha}+\frac{\alpha+\beta}{\beta}=\frac{(\alpha+\beta)^2}{\alpha \beta}=\frac{4 k ^2}{ k }=4 k$
and product of roots $=\left(\frac{\alpha+\beta}{\alpha}\right)\left(\frac{\alpha+\beta}{\beta}\right)=\frac{4 k ^2}{ k }=4 k$
Hence required quadratic equation is $x ^2-4 kx +4 k =0 $