Q.
Let k be a non-zero real number. If
$f(x) = \begin{cases} \frac{\left(e^x-1\right)^2}{sin\left(\frac{x}{k}\right)log\left(1+\frac{x}{4}\right)}, & \text{x $\ne$ 0} \\[2ex] 12, & \text{x = 0} \end{cases}$
is a continuous function, then the value of $k$ is :
Solution: