Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $K_{1}$ be the maximum kinetic energy of photoelectrons emitted by light of wavelength $\lambda_{1}$ and $K_{2}$ corresponding to wavelength $\lambda_{2}$. If $\lambda_{1}=2 \lambda_{2}$, then

AIIMSAIIMS 2009

Solution:

Here,
$K_{1} =\frac{h c}{\lambda_{1}}-W\,\,\,\,$...(i)
and $K_{2} =\frac{h c}{\lambda_{2}}-W\,\,\,\, $...(ii)
Substituting $\lambda_{1}=2 \lambda_{2}$ in Eq. (i), we get
$K_{1} =\frac{h c}{2 \lambda_{2}}-W $
$K_{1} =\frac{1}{2}\left(\frac{h c}{\lambda_{2}}\right)-W$
$=\frac{1}{2}\left(K_{2}+W\right)-W$
$K_{1} =\frac{K_{2}}{2}-\frac{W}{2}$
or $ K_{1}<\frac{K_{2}}{2}$