Q.
Let $\int \frac{x^4+1}{x^6+1} d x=\tan ^{-1}(f(x))-\frac{2}{3} \tan ^{-1}(g(x))+C$, where $C$ is constant of integration. where $f(1)=0$ and $g(0)=0$.
Number of roots of the equation $g(x)-x f(x)=0$ is equal to
Integrals
Solution: