Q.
Let $\int(\sin 3 \theta+\sin \theta) \cos \theta \cdot e^{\sin \theta} \cdot d \theta=\left(A \cdot \sin ^3 \theta+B \cdot \cos ^2 \theta+C \cdot \sin \theta+D \cdot \cos \theta+E\right) \cdot e^{\sin \theta}+K$
where $K$ is constant of integration. Find the value of $\frac{B}{A}+\frac{D}{E}$.
Integrals
Solution: