Q.
Let $ I=\int \frac{e^x}{e^{4 x}+1} d x$ and $J=\int \frac{e^{-x}}{e^{-4 x}+1} d x$
Then for any arbitrary constant $C$, match the following
Column I
Column II
A
$I$
P
$\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)+ C$
B
$J + I$
Q
$\frac{1}{2 \sqrt{2}} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)+ C$
C
$J - I$
R
$\frac{1}{2 \sqrt{2}}\left(\tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)-\frac{1}{2} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)\right)+ C$
S
$\frac{1}{2 \sqrt{2}}\left(\tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)+\frac{1}{2} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)\right)+ C$
Column I | Column II | ||
---|---|---|---|
A | $I$ | P | $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)+ C$ |
B | $J + I$ | Q | $\frac{1}{2 \sqrt{2}} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)+ C$ |
C | $J - I$ | R | $\frac{1}{2 \sqrt{2}}\left(\tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)-\frac{1}{2} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)\right)+ C$ |
S | $\frac{1}{2 \sqrt{2}}\left(\tan ^{-1}\left(\frac{ e ^{2 x }-1}{\sqrt{2} e ^{ x }}\right)+\frac{1}{2} \ln \left(\frac{ e ^{2 x }-\sqrt{2} e ^{ x }+1}{ e ^{2 x }+\sqrt{2} e ^{ x }+1}\right)\right)+ C$ |
Integrals
Solution: