Q.
Let $I_1=\int \tan x \tan (a x+b) d x$ and $I_2=\int \cot x \cot (a x+b) d x$
Column I
Column II
A
value of $I _1$ for $a =1$ is
P
$ x-\cot b \ln \frac{\cos (x-b)}{\cos x}+C$
B
value of $I _2$ for $a =1$ is
Q
$ \cot b \ln \frac{\sin x}{\sin (x+b)}-x+C$
C
value of $I _1$ for $a =-1$ is
R
$ \cot b \ln \left(\frac{\cos x}{\cos (x+b)}\right)-x+C$
D
value of $I _2$ for $a =-1$ is
S
$ x+\cot b \ln \left(\frac{\sin x}{\sin (b-x)}\right)+C$
| Column I | Column II | ||
|---|---|---|---|
| A | value of $I _1$ for $a =1$ is | P | $ x-\cot b \ln \frac{\cos (x-b)}{\cos x}+C$ |
| B | value of $I _2$ for $a =1$ is | Q | $ \cot b \ln \frac{\sin x}{\sin (x+b)}-x+C$ |
| C | value of $I _1$ for $a =-1$ is | R | $ \cot b \ln \left(\frac{\cos x}{\cos (x+b)}\right)-x+C$ |
| D | value of $I _2$ for $a =-1$ is | S | $ x+\cot b \ln \left(\frac{\sin x}{\sin (b-x)}\right)+C$ |
Integrals
Solution: