Q.
Let $I_1=\int \limits_0^{\pi / 2} e^{-x^2} \sin (x) d x ; I_2=\int\limits_0^{\pi / 2} e^{-x^2} d x ; I_3=\int\limits_0^{\pi / 2} e^{-x^2}(1+x) d x$ and consider the statements
$\text { I } I _1< I _2$
$\text { II } I _2< I _3 $
$\text { III } I _1= I _3$
Which of the following is(are) true?
Integrals
Solution: