Q.
Let $g: R \rightarrow R$ be defined as $g(x)=\operatorname{sgn}\left(x^2-5 x+6\right)$, then find the number of solutions of equation $\sin x=\cos ^{-1}\left(g\left(\sin ^{-1} x\right)\right)$ lying in interval$ [0,314].$
[Note: $\operatorname{sgn}( k )$ denotes the signum function of $k$.]
Inverse Trigonometric Functions
Solution: